
Chapter 4

State-Space Planning

4.1 Introduction

The simplest classical planning algorithms are state-space search algorithms.
These are search algorithms in which the search space is a subset of the state
space: each node corresponds to a state of the world, each arc corresponds
to a state transition, and the current plan corresponds to the current path
in the search space. This chapter is organized as follows:

• Section 4.2 discusses algorithms that search forward from the initial state
of the world, to try to find a state that satisfies the goal formula.

• Section 4.3 discusses algorithms that search backward from the goal for-
mula to try to find the initial state.

• Section 4.4 describes an algorithm that combines elements of both forward
and backward search.

• Section 4.5 describes a fast domain-specific forward-search algorithm.

4.2 Forward Search

One of the simplest planning algorithms is the Forward-search algorithm
shown in Figure 4.1. The algorithm is nondeterministic (see Appendix A).
It takes as input the statement P = (O, s0, g) of a planning problem P. If P
is solvable, then Forward-search(O, s0, g) returns a solution plan; otherwise
it returns failure.

The plan returned by each recursive invocation of the algorithm is called
a partial solution, because it is part of the final solution returned by the
top-level invocation. We will use the term partial solution in a similar sense

73



74 Part I, Chapter 4

Forward-search(O, s0, g)
s ← s0

π ← the empty plan
loop

if s satisfies g then return π
applicable ← {a | a is a ground instance of an operator in O,

and precond(a) is true in s}
if applicable = ∅ then return failure
nondeterministically choose an action a ∈ applicable
s ← γ(s, a)
π ← π.a

Figure 4.1: A forward-search planning algorithm. We have written it using
a loop, but it can easily be rewritten to use a recursive call instead (see
Exercise 4.2).

throughout this book.
Although we have written Forward-search to work on classical planning

problems, the same idea can be adapted to work on any planning problem in
which we can (1) compute whether or not a state is a goal state, (2) find the
set of all actions that are applicable to a state, and (3) compute a successor
state that is the result of applying an action to a state.

Example 4.1 As an example of how Forward-search works, consider the
DWR1 problem whose initial state is the state s1 of Figure 2.2 and Example
2.10, and whose formula is g = at(r1, loc1), loaded(r1, c3). One of the execu-
tion traces of Forward-search does the following. In the first iteration of the
loop, it chooses

a = move(r1, loc2, loc1),

producing the state s5 of Figure 2.3 and Example 2.13. In the second iter-
ation, it chooses

a = load(crane1, loc1, c3, r1),

producing the state s6 of Figure 2.4 and Example 2.14. Since this state
satisfies g, the execution trace returns

π = 〈move(r1, loc2, loc1), load(crane1, loc1, c3, r1)〉.

There are many other execution traces, some of which are infinite. For



Automated Planning 75

example, one of them makes the following infinite sequence of choices for a:

move(r1, loc2, loc1);
move(r1, loc1, loc2);
move(r1, loc2, loc1);
move(r1, loc1, loc2);
. . .

!

4.2.1 Formal Properties

Proposition 4.2 Forward-search is sound, any plan π returned by Forward-
search(O, s0, g) is a solution for the planning problem (O, s0, g).

Proof. The first step is to prove that at the beginning of every loop iter-
ation,

s = γ(s0,π).

For the first loop iteration, this is trivial since π is empty. If it is true at
the beginning of the i’th iteration, then since the algorithm has completed
i − 1 iterations, there are actions a1, . . . , ai−1 such that π = 〈a1, . . . , ai−1〉,
and states s1, . . . , si−1 such that for j = 1, . . . , i− 1, sj = γ(sj−1, aj). If the
algorithm exits at either of the return statements, then there is no (i + 1)th
iteration. Otherwise, in the last three steps of the algorithm, it chooses an
action ai that is applicable to si−1, assigns

s ← γ(si−1, ai)
= γ(γ(s0, 〈a1, . . . , ai−1〉), ai)
= γ(s0, 〈a1, . . . , ai〉),

and assigns π ← 〈a1, . . . , ai〉. Thus s = γ(s0,π) at the beginning of the next
iteration.

If the algorithm exits at the first return statement, then it must be true
that s satisfies g. Thus, since s = γ(s0,π), it follows that π is a solution to
(O, s0, g). !

Proposition 4.3 Let P = (O, s0, g) be a classical planning problem, and
let Π be the set of all solutions to P. For each π ∈ Π, at least one execution
trace of Forward-search(O, s0, g) will return π.



76 Part I, Chapter 4

Proof. Let π0 = 〈a1, . . . , an〉 ∈ Π. We will prove that there is a nonde-
terministic trace such that for for every positive integer i ≤ n + 1, π =
〈a1, . . . , ai−1〉 at the beginning of the i’th iteration of the loop (which means
that the algorithm will return π0 at the beginning of the n+1’th iteration).
The proof is by induction on i.

• If i = 0, then the result is trivial.
• Let i > 0, and suppose that at the beginning of the i’th iteration, s =

γ(s0, 〈a1, . . . , ai−1〉). If the algorithm exits at either of the return state-
ments, then there is no i+1st iteration, so the result is proved. Otherwise,
〈a1, . . . , an〉 is applicable to s0, so 〈a1, . . . , ai−1, ai〉 is applicable to s0, so
ai is applicable to γ(s0, 〈a1, . . . , ai−1〉) = s. Thus ai ∈ E, so in the non-
deterministic choice, at least one execution trace chooses a = ai. This
execution trace assigns

s ← γ(s0, γ(〈a1, . . . , ai−1〉, ai)
= γ(s0, 〈a1, . . . , ai−1, ai〉)

so s = γ(s0, 〈a1, . . . , ai−1, ai〉) at the beginning of the i + 1st iteration. !

One consequence of Proposition 4.3 is that Foreward-search is complete. An-
other consequence is that Foreward-search’s search space is usually much
larger than it needs to be. There are various ways to reduce the size of the
search space, by modifying the algorithm to prune branches of the search
space (i.e., cut off search below these branches). A pruning technique is
safe if it is guaranteed not to prune every solution; in this case the modified
planning algorithm will still be complete. If we have some notion of plan
optimality, then pruning technique is strongly safe if there is at least one
optimal solution that it doesn#prune. In this case, at least one trace of the
modified planning algorithm will lead to an optimal solution if one exists.

Here is an example of a strongly safe pruning technique. Suppose the
algorithm generates plans π1 and π2 along two different paths of the search
space, and suppose π1 and π2 produce the same state of the world s. If π1

can be extended to form some solution π1π3, then π2π3 is also a solution,
and vice versa. Thus we can prune one of π1 and π2, and we will still be
guaranteed of finding a solution if one exists. Furthermore, if the plan that
we prune is whichever of π1 and π2 is longer, then we will still be guaranteed
of finding a shortest-length solution if one exists.

Although the above pruning technique can remove large portions of a
search space, its practical applicability is limited, due to the following draw-



Automated Planning 77

back: it requires us to keep track of states along more than one path. In
most cases, this will make the worst-case space complexity exponential.

There are safe ways to reduce the branching factor of Forward-search
without increasing its space complexity, but most of them are problem-
dependent. Section 4.5 gives an example.

4.2.2 Deterministic Implementations

Earlier we mentioned that in order for a depth-first implementation of a non-
deterministic algorithm to be complete, it will need to detect and prune all
infinite branches. In the Forward-search algorithm, this can be accomplished
by keeping a record of the sequence (s0, s1, . . . , sk) of states on the current
path, and modifying the algorithm to return failure whenever there is an
i < k such that sk = si. Even better is to modify the algorithm to return
failure whenever there is an i < k such that sk ⊆ si. Either modification
will prevent sequences of assignments such as the one described in Example
4.1, but there are some domains in which the second modification will prune
infinite sequences sooner than the first one.

To show that the second modification works correctly, we need to prove
two things: (1) that it causes the algorithm to return failure on every infinite
branch of the search space, and (2) that it does not cause the algorithm to
return failure on every branch that leads to a shortest-length solution:

• To prove (1), recall that classical planning problems are guaranteed to
have only finitely many states. Thus, every infinite path must eventually
produce some state sk that is the same as a state si that previously oc-
curred on that path—and whenever this occurs, the modified algorithm
will return failure.

• To prove (2), recall that the modification causes the algorithm to return
failure, then there must be an i < k such that sk = si. If the current node
in the search tree is part of any successful nondeterministic trace, then
the sequence of states for that trace will be

〈s0, . . . , si−1, si, si+1, . . . , sk−1, sk, sk+1, . . . , sn〉,

where n is the length of the solution. Let that solution be p = 〈a1, . . . , an〉,
where sj+1 = γ(sj , aj+1) for j = 0, . . . , n − 1. Then it is easy to prove
that the plan p′ = 〈a1, . . . , ai−1, ak, ak+1, . . . , an〉 is also a solution (see
Exercise 4.3). Thus, p cannot be a shortest-length solution.



78 Part I, Chapter 4

Backward-search(O, s0, g)
π ← the empty plan
loop

if s0 satisfies g then return π
applicable ← {a | a is a ground instance of an operator in O

that is relevant for g}
if applicable = ∅ then return failure
nondeterministically choose an action a ∈ applicable
π ← a.π
g ← γ−1(g, a)

Figure 4.2: Nondeterministic backward search.

4.3 Backward Search

Planning can also be done using a backward search. The idea is to start at
the goal, and apply inverses of the planning operators to produce subgoals,
stopping if we produce a set of subgoals that is satisfied by the initial state.
The set of all states that are predecessors of states in Sg is

Γ−1(g) = {s | there is an action a such that γ−1(g, a) satisfies g}.

This is the basis of the Backward-search algorithm shown in Figure 4.2. It
is easy to show that Backward-search is sound and complete; the proof is
analogous to the proof for Forward-search.

Example 4.4 As an example of how Backward-search works, consider the
same DWR1 problem given in Example 4.1. Recall that in this problem,
the initial state is the state s1 of Figure 2.2, and the goal formula is g =
{at(r1, loc1), loaded(r1, c3)}, which is a subset of the state s6 of Figure 2.4.
One of the execution traces of Backward-search does the following:

In the first iteration of the loop, it chooses a = load(crane1, loc1, c3, r1),
and then assigns

g ← γ−1(g, a)
= (g − effects+(a)) ∪ precond(a)
= ({at(r1, loc1), loaded(r1, c3)}−{ empty(crane1), loaded(r1, c3)})
∪ {belong(crane1, loc1), holding(crane1, c3), at(r1, loc1), unloaded(r1)}
= {at(r1, loc1), belong(crane1, loc1), holding(crane1, c3), unloaded(r1)}.



Automated Planning 79

In the second iteration of the loop, it chooses a = move(r1, loc2, loc1), and
then assigns

g ← γ−1(g, a)
= (g − effects+(a)) ∪ precond(a)
= ({at(r1, loc1), belong(crane1, loc1), holding(crane1, c3), at(r1, loc1), unloaded(r1)}

− {at(r1, loc2), occupied(loc1)})
∪ {adjacent(loc2, loc1), at(r1, loc1),¬occupied(loc1)}

= {belong(crane1, loc1), holding(crane1, c3), at(r1, loc1),
unloaded(r1), adjacent(loc2, loc1), at(r1, loc2),¬occupied(loc1)},

In the third iteration of the loop, it chooses a = take(crane1, loc1, c3, c1, p1).
This time we will omit the details of computing g ← γ−1(g, a), except to say
that the resulting value of g is satisfied by s1, so that the execution trace
terminates at the beginning of the fourth interation, and returns the plan

π = 〈take(crane1, loc1, c3, c1, p1), (move(r1, loc2, loc1), load(crane1, loc1, c3, r1)〉.

There are many other execution traces, some of which are infinite. For
example, one of them makes the following infinite sequence of assignments
to a:

load(crane1, loc1, c3, r1);
unload(crane1, loc1, c3, r1);
load(crane1, loc1, c3, r1);
unload(crane1, loc1, c3, r1);
. . .

!

Let g0 = g. For each integer i > 0, let gi be the value of g at the end
of the i’th iteration of the loop. Suppose we modify Backward-search to
keep a record of the sequence of goal formulas (g1, . . . , gk) on the current
path, and to backtrack whenever there is an i < k such that gi ⊆ gk. Just as
with Forward-search, it can be shown that this modification causes Backward-
search to return failure on every infinite branch of the search space, and that
it does not cause Backward-search to return failure on every branch that leads
to a shortest-length solution (see Exercise 4.5). Thus, the modification can
be used to do a sound and complete depth-first implementation of Backward-
search.

The size of active can be reduced by instantiating the planning opera-
tors only partially rather than fully. Lifted-backward-search, shown in Fig-
ure 4.3, does this. Lifted-backward-search is a straightforward adaptation of



80 Part I, Chapter 4

Lifted-backward-search(O, s0, g)
π ← the empty plan
loop

if s0 satisfies g then return π
relevant ← {(o,σ) | o is an operator in O that is relevant for g,

σ1 is a substitution that standardizes o’s variables,
σ2 is an mgu for σ1(o) and the atom of g that o is
relevant for, and σ = σ2σ1}

if relevant = ∅ then return failure
nondeterministically choose a pair (o,σ) ∈ relevant
π ← σ(o).σ(π)
g ← γ−1(σ(g),σ(o))

Figure 4.3: Lifted version of Backward-search.

Backward-search. Instead of taking a ground instance of an operator o ∈ O
that is relevant for g, it standardizes o’s variables1 and then unifies it 2 with
the appropriate atom of g.

The algorithm is both sound and complete, and in most cases it will have
a substantially smaller branching factor than Backward-search.

Like Backward-search, Lifted-backward-search can be modified in order to
guarantee termination of a depth-first implementation of it, while preserv-
ing its soundness and completeness. However, this time the modification is
somewhat trickier. Suppose we modify the algorithm to keep a record of the
sequence of goal formulas (g1, . . . , gk) on the current path, and to backtrack
whenever there is an i < k such that gi ⊆ gk. This is not sufficient to guar-
antee termination. The problem is that this time, gk need not be ground.
There are infinitely many possible unground atoms, so it is possible to have
infinite paths in which no two nodes are the same. However, if two different
sets of atoms are unifiable, then they are essentially equivalent, and there
are only finitely many possible non-unifiable sets of atoms. Thus, we can
guarantee termination if we backtrack whenever there is an i < k such that
gi unifies with a subset of gk.

1Standardizing an expression means replacing its variable symbols with new variable
symbols that do not occur anywhere else. One of the exercises deals with why standard-
izing is needed here.

2mgu is an abbreviation for most general unifier; see Appendix B for details.



Automated Planning 81

STRIPS(O, s0, g)
π ← the empty plan
loop

if s satisfies g then return π
A ← {a | a is a ground instance of an operator in O,

and o is relevant for g}
if A = ∅ then return failure
nondeterministically choose any action a ∈ A
π′ ← STRIPS(O, s0,precond(a))
if π′ = failure then return failure
;; if we get here, then π′ achieves precond(a) from s
s ← γ(s,π′)
;; s now satisfies precond(a)
s ← γ(s, a)
π ← π.π′.a

Figure 4.4: A ground nondeterministic version of the STRIPS algorithm.

4.4 The STRIPS Algorithm

With all of the planning algorithms we have discussed so far, one of the
biggest problems is how to improve efficiency by reducing the size of the
search space. The STRIPS algorithm was an early attempt to do this. Figure
4.4 shows a nondeterministic version of the algorithm. In our version, every
partial plan is ground, but it is easy to write a lifted version (see Exercise
4.15).

STRIPS is somewhat similar to Backward-search, but differs from it in
the following ways:

1. In each recursive call of the STRIPS algorithm, the only subgoals that
are eligible to be worked on are the preconditions of the last previous
operator that was added to the plan. This reduces the branching factor
substantially; however, it makes STRIPS incomplete.

2. If the current state satisfies all of an operator’s preconditions, STRIPS
commits to executing that operator, and will not backtrack over this
commitment. This prunes off a large portion of the search space, but
again makes STRIPS incomplete.

As an example of a case where STRIPS is incomplete, STRIPS is unable to
find a plan for one of the first problems that a computer programmer learns



82 Part I, Chapter 4

s0 = {in(c3, p1), top(c3, p1), in(c1, p1), on(c3, c1),
on(c1, pallet), in(c2, p2), top(c2, p2),
on(c2, pallet), top(pallet, q1), top(pallet, q2),
top(pallet, q3), empty(crane)}

g = {on(c1, c2),
on(c2, c3)}

Figure 4.5: A DWR version of the Sussman anomaly.

how to solve: the problem of interchanging the values of two variables.
Even for problems that STRIPS solves, it does not always find the best

solution. Here is an example:

Example 4.5 Probably the best-known planning problem that causes dif-
ficulty for STRIPS is the Sussman anomaly, which was described in Exercise
2.1. Figure 4.5 shows a DWR version of this problem. In the figure, the
objects include one location loc, one crane crane, three containers c1, c2,c3,
and five piles p1, p2, q1, q2, q3. Although STRIPS’s search space for this
problem contains infinitely many solutions (see Exercise 4.14), none of them
are irredundant. The shortest solutions that STRIPS can find are all similar
to the following:

take(c3,loc,crane,c1),
put(c3,loc,crane,q1),
take(c1,loc,crane,p1),
put(c1,loc,crane,c2), STRIPS has achieved on(c1,c2)
take(c1,loc,crane,c2),
put(c1,loc,crane,p1),
take(c2,loc,crane,p2),
put(c2,loc,crane,c3), STRIPS has achieved on(c2,c3),

but needs to re-achieve on(c1,c2)
take(c1,loc,crane,p1),
put(c1,loc,crane,c2). STRIPS has now achieved both goals



Automated Planning 83

!

In both Example 4.5 and the problem of interchanging the values of
two variables, STRIPS’s difficulty involves deleted-condition interactions, in
which the action chosen to achieve one goal has a side-effect of deleting
another previously-achieved goal. For example, in the plan shown above, the
action take(c1,loc,crane,c2) is necessary in order to help achieve on(c2,c3),
but it deletes the previously achieved condition on(c1,c2).

One way to find the shortest plan for the Sussman anomaly is to in-
terleave plans for different goals. The shortest plan for achieving on(c1,c2)
from the initial state is

take(c3,loc,crane,c1), put(c3,loc,crane,q1),
take(c1,loc,crane,p1), put(c1,loc,crane,c2),

and the shortest plan for achieving on(c1,c2) from the initial state is

take(c2,loc,crane,p2), put(c2,loc,crane,c3).

We can get the shortest plan for both goals by inserting the second plan
between the first and second lines of the first plan.

Observations such as these led to the development of a technique called
plan-space planning, in which the planning system searches through a space
whose nodes are partial plans rather than states of the world, and a partial
plan is a partially ordered sequence of partially instantiated actions rather
than a totally ordered sequence. Plan-space planning is discussed in Chapter
5.

4.5 Domain-Specific State-Space Planning

This section illustrates how knowledge about a specific planning domain can
be used to develop a very fast planning algorithm that very quickly generates
plans whose lengths are optimal or near-optimal. The domain, which we call
the container-stacking domain, is a restricted version of the DWR domain.

4.5.1 The Container-Stacking Domain

The language for the container-stacking domain contains the following con-
stant symbols. There is a set of containers c1, c2, . . . , cn and a set of piles
p1, p2, . . . , pm, q1, q2, . . . , ql, where m,n, l may vary from one problem to an-
other and l ≥ n. There is one location loc, one crane crane, and a constant



84 Part I, Chapter 4

Table 4.1: Positions of containers in the initial state shown in Figure 4.5.

Container Position Maximal? Consistent with goal?

c1 {on(c1, pallet)} No No: contradicts on(c1, c2)
c2 {on(c2, pallet)} Yes No: contradicts on(c2, c3)
c3 {on(c3, c1), on(c1, pallet)} Yes No: contradicts on(c1, c2)

symbol pallet to represent the pallet at the bottom of each pile. The piles
p1, . . . , pm are the primary piles, and the piles q1, . . . , ql are the auxiliary
piles.

A container-stacking problem is any DWR problem for which the con-
stant symbols are the ones described above, and for which the crane and
the auxiliary piles are empty in both the initial state and the goal. As an
example, Figure 4.5 shows a container-stacking problem in which n = 3.

If s is a state, then a stack in s is any set of atoms e ⊆ s of the form

{in(c1, p), in(c2, p), . . . , in(ck, p), on(c1, c2), on(c2, c3), . . . , on(ck−1, ck), on(ck, t)}

where p is a pile, each ci is a container, and t is the pallet. The top and
bottom of e are c1 and ck, respectively. The stack e is maximal if it is not a
subset of any other stack in s.

If s is a state and c is a container, then position(c, s) is the stack in s
whose top is c. Note that position(c, s) is a maximal stack if and only if s
contains the atom top(c, p); see Table 4.1 for examples.

From the above definitions, it follows that in any state s, the position
of a container c is consistent with the goal formula g only if the positions
of all containers below c are also consistent with g. For example, in the
container-stacking problem shown in Figure 4.5, consider the container c3.
Since position(c1, s0) is inconsistent with g and c3 is on c1, position(c1, s0)
is also inconsistent with g.

4.5.2 Planning Algorithm

Let P be a container-stacking problem in which there are m containers and
n atoms. In time O(n log n) one can check whether or not P is solvable, by
checking whether or not g is consistent, and whether or not g mentions any
containers not mentioned in s0. If g is inconsistent or mentions a container
not mentioned in s0, then clearly P is not solvable.



Automated Planning 85

Stack-containers(O, s0, g):
if g is inconsistent or refers to any containers not in s0 then

return failure ;; the planning problem is unsolvable
π ← the empty plan
s ← s0

loop
if s satisfies g then return π
if there are containers b and c at the tops of their piles such that

position(c, s) is consistent with g
g contains on(b, c)

then
append actions to π that move b to c
s ← the result of applying these actions to s
;; we will never need to move b again

else if there is a container b at the top of its pile
such that position(b, s) is inconsistent with g
and there is no c such that on(b, c) ∈ g

then
append actions to π that move b to an empty auxiliary pile
s ← the result of applying these actions to s
;; we will never need to move b again

else
nondeterministically choose any container c such that c is

at the top of a pile and position(c, s) is inconsistent with g
append actions to π that move c to an empty auxiliary pallet
s ← the result of applying these actions to s

Figure 4.6: A fast algorithm for container-stacking.

Suppose g is consistent and only mentions containers that are also men-
tioned in s0, and let u1, u2, . . . , uk be all of the maximal stacks in g. It is
easy to construct a plan that solves P by moving all containers to auxiliary
pallets and then building each maximal stack from the bottom up. The
length of this plan is at most 2m, and it takes time O(n) to produce it.

In general, the shortest solution length is likely to be much less than 2m,
because most of the containers will need to be moved only once or not at
all. The problem of finding a shortest-length solution can be proved to be
NP-hard, which provides strong evidence that it requires exponential time
in the worst case. However, it is possible to devise algorithms that find,



86 Part I, Chapter 4

in low-order polynomial time, a solution whose length is either optimal or
near-optimal. One simple algorithm for this is the Stack-containers algorithm
shown in Figure 4.6. Stack-containers guaranteed to find a solution, and it
runs in time O(n3), where n is the length of the plan that it finds.

Unlike STRIPS, Stack-containers has no problem with deleted-condition
interactions. For example, Stack-containers will easily find a shortest-length
plan for the Sussman anomaly.

The only steps of Stack-containers that may cause the plan’s length to
be non-optimal are the ones in the else clause at the end of the algorithm.
However, these steps usually are not executed very often, because the only
time that they are needed is when there is no other way to progress toward
the goal.

4.6 Discussion and Historical Remarks

Although state-space search might seem like an obvious way to do planning,
it languished for many years. For a long time, no good techniques were
known for guiding the search; and without such techniques, a state-space
search can search a huge search space. During the last few years, better
techniques have been developed for guiding state-space search (see Part 3 of
this book). As a result, some of the fastest current planning algorithms use
forward-search techniques [30, 263, 402].

The container-stacking domain in 4.5 is a DWR adaptation of a well
known domain called the blocks world. The blocks world was originally
developed by Winograd [545] as a test bed for his natural-language under-
standing program, but it subsequently has been used much more widely as
a test bed for planning algorithms.

The planning problem in Example 4.5 is an adaptation of a blocks-world
planning problem originally by Allen Brown [532], who was then a Ph.D.
student of Sussman. Sussman was the one who popularized the problem
[492]; hence it became known as the Sussman anomaly.

In Fikes and Nilsson’s original version of STRIPS [180], each operator
had a precondition list, add list, and delete list, and these were allowed to
contain arbitrary well-formed formulas in first-order logic. However, in the
presentation of STRIPS in Nilsson’s subsequent textbook [414], the opera-
tors were restricted to a format that is equivalent to our classical planning
operators.

Stack-containers is an adaption of Gupta and Nau’s blocks-world plan-
ning algorithm [241]. Although our version of this algorithm runs in O(n3)



Automated Planning 87

time, Slaney and Thiébaux [470] describe an improved version of it that runs
in linear time, and they also describe another algorithm that also runs in
linear time and finds significantly better plans.

4.7 Exercises

4.1 Here is a simple planning problem in which the objective is to inter-
change the values of two variables v1 and v2:

s0 = {value(v1,3), value(v2,5), value(v3,0)};
g = {value(v1,5), value(v2,3)};

assign(v, w, x, y)
precond: value(v, x),value(w, y)
effects: ¬value(v, x), value(v, y)

If we run Forward-search on this problem, how many iterations will there
be in the shortest execution trace? In the longest one?

4.2 Show that the algorithm shown in Figure 4.7 is equivalent to Forward-
search, in the sense that both algorithms will generate exactly the same
search space.

Recursive-forward-search(O, s0, g)
if s satisfies g then return the empty plan
active ← {a | a is a ground instance of an operator in O

and a’s preconditions are true in s}
if active = ∅ then return failure
nondeterministically choose an action a1 ∈ active
s1 ← γ(s, a1)
π ← Recursive-forward-search(s1, g, O)
if π += failure then return a1.p
else return failure

Figure 4.7: A recursive version of Forward-search.

4.3 Prove property (2) of Section 4.2.2.

4.4 Prove that if a classical planning problem P is solvable, then there will
always be an execution trace Backward-search that returns a shortest-length
solution for P.



88 Part I, Chapter 4

4.5 Prove that if we modify Backward-search as suggested in Section 4.3,
the modified algorithm has the same property described in Exercise 4.4.

4.6 Explain why Lifted-backward-search needs to standardize its operators.

4.7 Prove that Lifted-backward-search is sound and complete.

4.8 Prove that Lifted-backward-search has the same property described in
Exercise 4.4.

4.9 Prove that the search space for the modified version of Lifted-backward-
search never has more nodes than the search space for the modified version
of grounded-backward-search.

4.10 Why did Problem 4.9 refer to the modified versions of the algorithms
rather than the unmodified versions?

4.11 Trace the operation of the STRIPS algorithm on the Sussman anomaly
to create the plan given in Section 4.4. Each time STRIPS makes a nonde-
terministic choice, tell what the possible choices are. Each time it calls itself
recursively, give the parameters and the returned value for the recursive
invocation.

4.12 In order to produce the plan given in Section 4.4, STRIPS starts out
by working on the goal on(c1,c2). Write the plan STRIPS will produce if it
starts out by working on the goal on(c2,c3).

4.13 Trace the operation of STRIPS on the planning problem in Exercise
4.7.

4.14 Prove that STRIPS’s search space for the Sussman anomaly contains
infinitely many solutions, and that it contains paths that are infinitely long.

4.15 Write a lifted version of the STRIPS algorithm.

4.16 Redo Exercise 4.11 through 4.13 using your lifted version of STRIPS.

4.17 Our formulation of the container-stacking domain requires n auxiliary
piles. Will the n’th pile ever get used? Why or why not? How about the
n− 1’st pile?



Automated Planning 89

4.18 Show that if we modify the container-stacking domain to get rid of the
auxiliary piles, then there will be problems whose shortest solution length
is longer than before.

4.19 Suppose we modify the notation for the container-stacking domain so
that instead of writing, for example,

in(a, p1), in(b, p1), top(a, p1), on(a, b), on(b, pallet),
in(c, p2), in(d, p2), top(c, p2), on(c, d), on(d, pallet)

we would instead write

clear(a), on(a, b), on(b, p1), clear(c), on(c, d), on(c, p2)

(a) Show that there is a one-to-one correspondence between each problem
written in the old notation and an equivalent problem written in the
new notation.

(b) What kinds of computations can be done more quickly using the old
notation than using the new notation?

4.20 If P is the statement of a container-stacking problem, what is the
corresponding planning problem in the blocks-world domain described in
Exercise 3.6? What things prevent the two problems from being completely
equivalent?

4.21 Show that Stack-containers will always find a shortest-length solution
for the Sussman anomaly.

4.22 Find a container-stacking problem for which Stack-containers will not
always find a shortest-length solution. Hint: you probably will need at least
thirteen containers.


